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The supersonic flow past a leading edge 
separation bubble 

By A. W. SHARP 
Department of the Mechanics of Fluids, University of Manchester 

(Received 24 August 1958) 

The supersonic flow field outside a leading edge separation bubble has been com- 
puted in detail by a special application of the method of characteristics. Experi- 
mental observations on a two-dimensional square-nosed flat plate at M = 1.96 
formed the initial data, and base points were established on the plate surface. 
Computations proceeded outwards and upstream to the sonic line and bow wave, 
the bow wave entropy gradient being taken into account. The shape of the sonic 
line was found to be very sensitive to the conditions along the plate surface. 
Streamlines and iso-Mach lines have been interpolated and are presented. Good 
agreement was found at the intersection of the network and the bow wave 
between computed values and those given directly by the shock wave equations. 
A comparison has been made with interferometric results from France. 

1. Introduction 
The two-dimensional supersonic flow past a square-nosed flat plate involves 

a detached bow shock wave with a resulting region of mixed flow. Also, the 
boundary layer on the front face of the plate is unable to negotiate the right-angle 
corner and separates, reattaching to the plate some distance downstream. The 
region enclosed between the separated boundary layer, or mixing region, and the 
solid boundary is termed a separation bubble. Such bubbles have been noted 
previously, for instance by Holder & Chinneck (1954), who photographed and 
pressure-plotted the region at Mach numbers below that of the present work. 
Separation bubbles have also been observed to occur on the leading edge of thin 
aerofoils. 

After traversing the bow shock wave, the flow close to the centre line is 
subsonic, but accelerates to supersonic speed, attaining a Mach number of unity 
at the sonic line which joins the bow wave sonic point to the sonic point on the 
plate. Of these two end-points, the former is easily determined from the bow 
wave slope, and the latter is generally accepted to lie at the corner of the plate. 
However, the shape of the sonic line between them and the interdependence 
between its shape and the conditions along the separated region and the solid 
boundary farther downstream are not known. 

It appeared possible that the supersonic portion of the external flow field 
might be computed by the method of characteristics if the flow conditions along 
the plate were known. It was hoped that the shape and location of the sonic line 
might be determined, and that its relationship with the boundary conditions 
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would be clarified. The procedure followed is described in the present paper, the 
basic data being the experimentally determined pressure distribution and bubble 
profile. On suitably spaced base points a characteristics network has been con- 
structed, which extends upstream to the inboard portion of the sonic line, and 
outwards to the bow wave. In  this way, it has proved possible to determine the 
inboard part of the sonic line, and also the streamlines and iso-Mach lines in the 
supersonic region. 

In  Q 2 below the basic experimental results are described, whilst their conversion 
to usable form is discussed in 8 3. Details of the actual computation follow in § 4 
and a discussion of the resultant flow field is given in 6 5. 

2. The basic experimental data 
The flat plate of & in. thickness was mounted at zero incidence in an inter- 

mittent vacuum-operated wind tunnel of working section dimensions 5 in. x 4 in.; 
this wind tunnel has been described previously by Bardsley & Mair (1951). The 
plate spanned the entire 4in. width of the working section and was supported 

1 3 

Distance from leading edge (in plate thicknesses) 

FIGURE 1. Static pressure distribution near leading edge of flat plate. 

from downstream by two arms. The Mach number was 1.96, and atmospheric 
stagnation conditions yielded a free stream Reynolds number of 3-44 x 106 with 
a length scale of one inch. The humidity of the air was maintained well below 
0.2g/kg in order to avoid condensation effects. Pressure tappings of 0.015in. 
diameter in the surface of the plate communicated, via a buried tube, with an 
absolute mercury manometer of accuracy 

The measured pressure distribution on the plate is shown in figure 1. P is the 
static pressure and H the free stream stagnation pressure. The broken curve a t  
the downstream end indicates the expected return to free stream static pressure. 
The upward kink in the observed curve is thought to be due to compression and 
rarefaction disturbances propagated downstream from the bow wave-boundary 
layer interaction on the tunnel window, and has been ignored in what follows. As 

0.1 mm of mercury. 
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would be expected, the pressure inside the front portion of the bubble is constant, 
but is followed by a rapid pressure rise through the recompression fan. 

The flow pattern was photographed, using a conventional two-mirror schlieren 
system with a flash-tube as light source. A photograph of the nose region is shown 
in figure 2 (plate 1). The apparent thickness of the shock waves and separated 
boundary layer is due to interaction with the window boundary layer, and to the 
flow not being truly two-dimensional. 

3. Conversion of data 
The static pressure distribution was first converted into the surface Mach 

number distribution, allowance being made for the loss of stagnation pressure 
suffered when the stagnation streamline traversed the normal bow wave. The 
pressure across the separated region was assumed to be constant at each station. 
The schlieren photograph was then enlarged to eight times natural size, and the 
ordinates of the bubble profile were carefully measured a t  a number of stations. 
Similar measurements were taken of the bow wave location and shape. It was 
now necessary to fit analytic curves to these profiles in order that the ordinates 
and slopes could be calculated at all points. 

The bow wave co-ordinates were fitted very well by a cubic over the range 
required. From this curve, the slope of the bow wave at  any ordinate could be 
calculated, so that the bow wave sonic point was located precisely, The fitting 
of curves to the bubble profile proved to be rather more difficult. The initial 
direction of the separated layer was calculated, assuming sonic conditions at the 
corner, and knowing the bubble static pressure. The photographic ordinates were 
well fitted by a combination of three curves, namely an ellipse from the leading 
edge to just beyond the point of maximum height, followed by a straight line 
down towards the surface, and a circular arc between the line and the surface. Of 
these curves, the ellipse had the correct slope at  the leading edge, the straight line 
was tangential to both the ellipse and the circular arc, and the plate surface was 
tangential to the arc. A trial set of computations basedon this boundary, however, 
produced kinks in the iso-Mach lines and flaws in the recompression shock wave. 
These flaws were traced back to the concave portion of the profile, and it was 
realized that a smooth distribution of ( B + t )  along the boundary had not been 
obtained, although both 8, the flow direction, and t ,  a function of Mach number, 
individually had smooth distributions. This requirement for a smooth (0 + t )  
distribution proved difficult to satisfy, but was eventually achieved by fitting 
a parabola and a quintic to the recompression region. The condition that (0 + t )  
must vary smoothly along the boundary therefore severely limited the choice of 
curves available for fitting, and also demonstrated the close relationship between 
surface conditions and sonic line shape. 

4. Details of the computations 
4.1. The Jirst approximation 

The information available, namely the distributions of flow direction, Mach 
number, and bubble height along the surface made it possible to commence the 
calculations after selecting suitably spaced base points. These were selected to 
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coincide with the static holes over most of the bubble region, but this spacing was 
varied where necessary. Thus, close to the leading edge the bubble curvature is 
much increased, and the base points are accordingly much closer together; 
conversely, far downstream conditions become almost constant, and a much 
wider spacing is acceptable. The data were sufficient to permit the computation, 
by the method of characteristics, of the flow field enclosed by the first minus Mach 
line from the leading corner and the plus Mach line from any surface point 
downstream. (Plus and minus Mach lines are defined in figure 3.) Since the 
surface static pressure becomes constant downstream of the bubble, the flow field 
may be investigated as far downstream, and hence as far outwards as is required, 
the conditions on all plus Mach lines being known. 

G 

FIGURE 3. Angles used in computing H from F and G. 

Using Cartesian co-ordinates x, y, the characteristic equations for the Mach 
lines may be written (see Meyer 1948), 

where the upper and lower signs refer to plus and minus Mach lines respectively. 
(p  is the Mach angle, 6' the angle between the x-axis and the velocity vector, p the 
density, a the velocity of sound, and p the pressure.) Equation (2) may be 
rewritten in the form 

d(tkB)+dasinZp = 0, 

where 
dq as 

dt =-cotp and d g = - -  !l 2yR' (3) 
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FIGURE 2 (plate 1). The separation bubble. 
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Here, q is the velocity magnitude, s the specific entropy, y the ratio of specific 
heats, and R the gas constant. It may be shown that 

t = ,u-&r+h-lcot-l(h-ltan,u), (4) 

where 

The function (1000 - t ) ,  normally referred to as the pressure number, has been 
tabulated for y = 1.400 by Herbert & Older (1946). 

As a first approximation, the difference in entropy change between adjacent 
streamlines across the curved bow wave was neglected, so that equation (3) 
became 

From equations (1) and ( 5 ) ,  a network of points was constructed by the usual 
method of characteristics, extending upstream and outwards and based on the 
surface points. In  the expansion fan at the leading corner, minus Mach lines were 
chosen at intervals of 5" in 8. Iso-Mach lines were drawn in by interpolation for 
Mach numbers, M ,  equal to 1.1, 1.2, 1.3, and were found to be kinked, due to an 
irregular surface distribution of (6+ t ) .  The mechanism of this effect may be 
explained as follows. I n  figure 4, ignoring entropy differences, 

= [(Y - I)/(? + 1)P .  

d(t & 8) = 0. (5)  

(8+t), = (B+t),. 

FIGURE 4. Shape of iso-Mach lines. 

Along the iso-Mach line, by definition, M = constant, so that ,u and t are also 
constant. Thus using suffixes M ,  B, to denote conditions on the iso-Mach line 
and boundary respectively, and since (8  + t )M = (8 + t),, we have 

8, = (8 + t) ,  - t ,  = (8 + t ) ,  - constant. 

Hence, once (8+t),  has settled down to its constant value, it follows that 
8, = constant. Moreover, we now have OM and tM both constant so that 
(8 - t )M = constant, i.e. the iso-Mach line is also a minus Mach line. Also, since 
p M ,  8, are constant along this line, ?,hM = (8 +,u)~ = constant, and the iso-Mach 
lines and minus Mach lines are therefore straight in this region. 

29 Fluid Meoh. 6 
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It can thus be seen that kinks in (0 + t )B would give rise to corresponding kinks in 
the distribution of 0, along the iso-Mach line, leading, in turn, to kinks in the line 
itself. The correctness of this diagnosis was demonstrated by the elimination of 
the iso-Mach line kinks when the (0 + t ) B  distribution was smoothed out by the 
modified choice of boundary curves already discussed. 

4.2. The entropy correction 
The curvature of the bow shock wave causes an entropy gradient across the 
flow downstream, each streamline having an entropy value which is constant but 
different from those of its neighbours. Accordingly, in order to evaluate the 
second term in equation (3), it was necessary to identify the streamline upstream 
of the bow wave which corresponded to the point under computation. This was 
achieved by calculating the mass flow between the first approximation to the 
point and the boundary. Thus for H (figure 3), the mass flow across FH was cal- 
culated, where F was already corrected for entropy (and hence the mass flow 
between P and the boundary was known). Thus, the mass flow between the 
boundary and H was obtained, thereby locating the H-streamline upstream of 
the bow wave. From this ordinate, the corresponding bow wave slope was derived 
and hence the entropy increase. This in turn yielded the entropy differences d c  
between H and P, and between H and CT, which were required for insertion in 
equation (3). The flow and position parameters for H were then recalculated with 
this entropy correction included. Fortunately, the correction was not large 
enough to  necessitate any iterative repetition of the procedure. (No correction 
was applied for entropy changes produced by the recompression. This is not likely 
to lead to any appreciable error since, in the region computed, much of the 
recompression takes place through a fan or weak shock.) This system was used in 
computing the whole flow field, apart from the region very close to the sonic line 
which required special treatment as will be seen in 5 4.3 below. 

4.3. TheJinal step to the sonic line 
The usual system of characteristics computations as outlined in 4.1 above may 
be shown to assume that the Mach line segments are circular arcs. This assump- 
tion is fully justified in general for small steps, but in the neighbourhood of the 
sonic line the Mach lines curve strongly, and have been shown by Holt (1949) to 
behave like semi-cubical parabolae. This holds only for small v = &r -p,  and was 
here taken to be true for M < 1.02, corresponding to v = 0.3radian. Accordingly, 
a method was used whereby 4, $ (figure 3) were averaged along a semicubical 
parabola rather than the usual circular arc. Thus if the semicubical parabola is 
y*3 = C Z * ~ ,  and the chord is y* = Z* tan 7 (see figure 5) ,  then it may be shown that 
tan 7 = C tan p .  This has utilized an origin on the sonic line with the z-axis in the 
local flow direction. Translation of the origin to that of the characteristics network 
will not affect the purely angular relationship between 7 and B, but the angles to 
be averaged must be related to a new reference direction before the equation is 
used. This new reference direction, O,, will be the flow direction at the intersection 
of the sonic line and the relevant Mach line. Since the entropy term is negligible 
for this last step to  the sonic line (see below), and since t = 0 on the sonic line, it 
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follows that 8, is identical with the value of 8 5 t on the plus or minus Mach line. 
In  place of the old 4, @ (Mach line inclinations to free stream direction), we use 
$*, @*, where for a plus Mach line, q5* = q5 - Os+ = 8 -p, - 0,, = - (p, + t ) ;  and for 
a minus Mach line, $* = y?--O,- = 8+,uC-8,- = p+t.  Here, for any point, 
O,, = 8 + t (along the plus Mach line) and 8,- = 8 - t (along the minus Mach line). 
Then, on a plus Mach line, 7 = $*$$ = tan-1 ($tan q5*) and, on a minus Mach line, 
7 = @*g = tan-l($ tan y?*), where the affices g, 8 refer to average quantities 
between the points. Then q5$$ = q5*g+8,+ and y?g = @*g+6',-. These latter 
values, $$$, $8 (averages along the semicubical parabolae) were then used to 
determine xH, y H ,  as before. 

FIQURE 5. The semicubical parabola. 

As will now be seen, it was not possible to correct this final step for entropy 
variations, but it will be shown that the correction would be negligible. The effect 
of the entropy correction is to increase the Mach number of the first approxima- 
tion. Thus, in order to attain a specified Mach number M ,  it is necessary, when 
calculating the first approximation, to overshoot M to a lower value, which is 
then raised to the required value M by the correction. This is clearly impossible 
for M = 1, since the characteristics become imaginary for M < 1. However, this 
inability to correct for entropy is of no consequence, since the correction would be 
negligiblefor tworeasons: (i) thestep from M = 1-02 t o M  = 1-00isgeometrically 
very small, so that d c  would be negligible; (ii) in this region, ,u -+ 90°, hence 
sin 2p + 0. Accordingly, the correction term d c  sin Zp, will be extremely small and 
its omission of no importance. 

4.4. Summary of the computations 
The use of the techniques described above, in $$4.1,4.2 and 4.3, made possible 
the computation of almost all the supersonic flow field downstream of the sonic 
line and bow wave. Where necessary, due to rapid variation of the parameters, 
the mesh size was reduced in order to maintain the accuracy. The network was 
extended outwards until it intersected the bow wave. 

29-2 
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Only about one-third of the sonic line proved to be calculable, since at C (see 
figure 6), about 0-85 plate thickness from the surface, the line curved strongly 
upstream. Outboard of this point, computations ceased to be possible upstream 
of the minus Mach line CA,  leaving an indeterminate supersonic zone CAS, 
enclosed by the outermost portion of the sonic line, part of the bow wave, and the 
minus Mach line. Whilst conditions are fully known along this minus Mach line, 
these data are not sufficient to enable the mesh to be extended farther upstream 
since data along a plus Mach line also would be required. 

/ 

Bow u rave ' , 'B,  Plus Mach line through 
\ I  > sonic point 

'IXY 
Uostream boundarv of comoured 

Sonic line /'\ 
mesh (minus Mach linej 

FIGURE 6. The indeterminate region. 

Consideration has been given to the possibility of computing this zone by using 
base points on the bow wave outboard of the sonic point. This would not permit 
computation of the whole zone, but only that portion ABS which lies downstream 
of the plus Mach line through the sonic point. The undetermined portion of the 
sonic line, CS, would thus remain indeterminate by this method. It might, how- 
ever, then be possible to use conditions along the present bounding minus Mach 
line, CA, and along the sonic point plus Mach line, XB, together. Whilst such a pro- 
cedure seems feasible in principle, it would be inaccurate for the following reasons : 
(i) the present network and the bow wave are not in exact agreement at their inter- 
section, A ;  (ii) the inevitable slight errors in t a t  the bow wave base points would 
be serious since in this region t is itself very small ( M  2: l), but a,u/at very large. 

Under these circumstances, the scheme has not been pursued further. 
The computed flow parameters at the network points have been used to draw 

in iso-Mach lines and streamlines by interpolation in ,,u and mass flow respectively. 
The network of Mach lines is shown in figures 7 and 8 and the resultant streamlines 
and iso-Mach lines in figure 9. These results will be discussed in Q 5 below. 
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5. The computed flow field 
5.1. Conditions at the network-bow wave intersection 

It was of interest, when the characteristics network intersected the bow wave, 
to compare the network values of the flow parameters with those calculated from 
the shock wave equations st the relevant point. This is done in figure 10, where 
Mach number and flow direction downstream of a curved shock wave at M = 1.96 
are plotted against each other. Conditions at the intersection of the mesh and the 
bow wave, as predicted by the characteristics, are plotted as a single point for 
comparison. 

FIGURE 8. The nose region enlarged. 

There are a number of sources from which the small discrepancy may arise: 
e.g. (i) errors in basic data, and incompatibility of curves fitted to boundary and 
bow wave; (ii) cumulative errors inevitable in any step-by-step method involving 
the use of mean quantities; (iii) neglect of the entropy change across the recom- 
pression shock may also have contributed. 

Under these circumstances, the agreement is regarded as highly satisfactory, 
possibly due to the mutual cancellation of some errors. 

It should be noted that the bow wave does not emerge from the computations 
as did the recompression shock wave. The bow wave results, as a normal shock 
wave, from the presence of a blunt-nosed body in the supersonic free stream. It 
thus enters the domain of the present calculations already determined, and is 
merely weakened by the incident expansion wavelets. As a result, the computa- 
tion of the network did not in any way indicate the existence or location of the bow 
wave. Thus the mesh would have been extended farther outwards (into what is 
actually the free stream) had not photographic evidence of the bow wave location 
been available. 
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5.2.  The characteristics network (figures 7 and 8 )  

The expansion Mach lines from the fan at the leading edge curve upstream and 
are reflected by the sonic line and bow wave back on to the surface as compression 
wavelets. Those which strike the sonic line form a cusp at that point, since the 
two Mach line families coincide at M = 1-00. After a further reflexion from the 
surface, this time as compression waves, the Mach lines coalesce to form the 
recompression fan and shock wave, which agree well with the observed wave. 

M2 
F I Q ~ E  10. Accuracy of the characteristics network. 0 denotes computed values. 

The leading expansion waves from the corner cause the sonic line to bulge 
upstream, and illustrate the manner in which it runs perpendicularly into the 
front face of the plate. The subsequent downstream bulge of the sonic line, 
followed by a further upstream bend, leads to the indeterminate region of super- 
sonic flow ACS (see figure 6). In  the first approximation, the sonic line would have 
become straight at C, approximately one plate thickness outboard of the surface, 
and would subsequently have coincided with a minus Mach line. The effect of the 
entropy correction has been to curve the sonic line upstream and the minus Mach 
line downstream, thereby producing between them the narrow triangular region, 
ACS,  devoid of information along plus Mach lines. Accordingly, this triangular 
portion of the flow field cannot be computed by the present method. A possible 
alternative line of attack was considered in 3 4.4 above, but was rejected for the 
reasons stated there. 

Downstream of the recompression, the flow is parallel to the plate surface, but 
traversal of the curved bow wave has produced a gradient, normal to the surface, 
in entropy and hence in Mach number. The Mach lines in this region are slightly 
curved as a result. 
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5.3. The streamlines and iso-Mach lines (Jigure 9) 

The streamlines have the expected shape; the subsonic portions have been 
drawn in qualitatively, but with the correct initial direction behind the bow wave. 
The entropy gradient referred to above leads to a gradient in mass flux. As 
a result, streamtubes of equal width in the free stream are no longer so downstream 
of the recompression. The displacement effect of the plate on the streamlines falls 
off with perpendicular distance from the plate. 

The expansion fan from the leading edge accelerates the flow from M = 1 to 
M = 2.47. The latter Mach number, the highest attained throughout the flow 
field, corresponds to the constant pressure portion of the separation bubble from 
the leading edge to just beyond the point of maximum height. This part of the 
bubble profile is thus the iso-Mach line of M = 2.47. 

The iso-Mach lines may be divided into two types: 
(i) 1M > Ml (where Ml is free stream Mach number). These form closed curves; 

commencing in the expansion fan, they curve outwards and downstream, form 
a cusp in the recompression shock, and then descend again to the surface via the 
recompression fan. They thus enclose embedded regions of Mach number greater 
than their own, e.g. M = 2.0,2-2 in figure 8. The case of M = 2-47 discussed above 
is the limiting case of this type, in which the embedded region has collapsed on to 
the bubble profile. 

(ii) M < MI. These also commence in the leading edge fan, curve downstream, 
and then upstream again. They thus intersect the bow wave and not the recom- 
pression shock. For M 2 1.77, they possess another branch which rises from the 
concave portion of the bubble surface, through the recompression fan, and then 
turns downstream, parallel to the surface and coinciding with a streamline, e.g. 
M = 1.80. M = 1-77 is the limiting case of this type, being the constant Mach 
number along the plate surface downstream of the recompression region. 

The iso-Mach line of M = 2.47 has the same shape as the bubble profile since it 
coincides with that profile. It will also be noted that the remainder of the iso-Mach 
lines from the leading edge have this shape, which appears to be transmitted up 
the plus Mach lines. The similarity was heightened when the entropy correction 
was omitted, since the iso-Mach lines eventually became straight, corresponding 
to the flat surface downstream of the bubble reattachment point. The entropy 
correction subsequently produced the gentle upstream curvature in this region. 

The shape of the outer portion of the sonic line, not calculable by the present 
technique, may be inferred from that of the M = 1.15 iso-Mach line. In  view of 
the slight discrepancy noted between the bow wave and the characteristics mesh, 
it is unlikely that the computed sonic line would pass through the bow wave sonic 
point marked. It would probably intersect the bow wave some distance inboard 
of this point. 

The pattern of iso-Mach lines forms an interesting comparison and contrast 
with figure 11 of the paper by Roy (1957) which is reproduced here as figure 11. 
This figure, obtained from an interferogram, shows the streamlines and iso-Mach 
lines in the flow past a plate with a rounded leading edge. The Mach number was 
identical with that of the present work, namely 1-96. It is therefore instructive 
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to compare the two patterns, one taken from experimental observation, the 
other also derived from experimental data, but after lengthy step-by-step 
computations. 

The different leading edge configuration has a considerable effect, of course, in 
that the rounded leading edge eliminates the separation bubble and subsequent 
recompression. Far downstream of the leading edge, however, agreement would 
be expected, and the streamlines and iso-Machlines in this region do compare well, 
e.g. 22 = 1.80. The absence of the bubble removes the distortion from the inboard 
ends of the leading edge iso-Mach lines, which therefore curve smoothly outwards 
to the bow wave. Again, since there is no bubble to accelerate the flow beyond the 
free stream Mach number, there is no embedded pocket of such flow, and a recom- 
pression shock wave is unnecessary. 

FIGURE 

M 

11. Flow past a plate with a rounded leading edge ; reproduced from Roy (1967). 

6. Conclusions 
Commencing from the experimental observations of the flow direction and 

Mach number along the surface of the square-nosed flat plate with separation 
bubble at M = 1.96, the external supersonic flow field has been computed by the 
method of characteristics. It has proved feasible to work upstream and outwards 
from the surface, as far as the sonic line and bow wave. The entropy gradient due 
to the curved bow wave has been incorporated in the calculations, and a special 
technique has been used for the region close to the sonic line. A small portion of 
the flow field, including the outer end of the sonic line has proved to be indeter- 
minate by this method. 

The values of the flow parameters at the mesh points have been used to plot 
streamlines and iso-Mach lines by interpolation. The agreement between the 
flow parameters predicted by the characteristics and by the shock wave equations 
at the network-bow wave intersection was found to be excellent. The iso-Mach 
line pattern has afforded an interesting comparison with results obtained in 
France by interferometry for a differently shaped leading edge at the same Mach 
number. 
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